CHARGES ON STRANGE QUARK NUGGETS IN SPACE

V. Teplitz, A. Bhatia (GSFC)

E. Abers (UCLA), D. Dicus (U.T.)

W. Repko (MSU), D. Rosenbaum (SMU)

Basic Idea/History

- Witten (1984): 3 quark flavors implies same
 P.E., but less K.E. by Pauli Principle
- Farhi and Jaffe find SQN B.E./q rises to asymptotic value as N=A/3 rises
- A. De Rujula and S. Glashow Identify bunch of methods of detecting SQNs
- M. Alford, K.Rajagopal, and F.Wilczek find Cooper pairing of SQN q's

Production

- Primordial: depends on cooling by evaporation being less than cooling by neutrino emission and any other mechanisms
- Evap~M^{2/3}; neutrinos~M. M>10/20} works

Collisions of SQS's from NS binaries

Selected Searches

TABLE I: Some Strange Quark Nugget Searches.

Experiment/Observation	Mass Range (g)	Result
AMS^a	$10^{-24} - 10^{-22}$	not done
RHIC^a	$<3\times10^{-21}$	not found
${ m Mica~Tracks}^b$	$10^{-20} - 10^{-14}$	$<< ho_{DM}$
$ICE CUBE^c$	$10^{-3} - 10^{-2}$	not done
Seismometers:		
${\rm Future} \ {\rm Lunar}^{-d}$	$10^3 - 10^6$	not done
Apollo^e	$10^4 - 10^6$	$< ho_{DM}/10$
${\color{red} \text{USGS Reports}^c}$	$10^6 - 10^8$	$< ho_{DM}$

Settings

TABLE II: Settings.

Location	Radiation Source		
	Extragalactic	Galactic	Solar
Extragalactic	$(1+z)T_0$; CBR	DBR	
Galactic	$z_{rec} > z \ge 0; \text{DBR}$	$r_{sc} > r > r_{bh}$	

$$r > r_S$$
; DBR

$$r > r_S$$

$$r > r_S$$

SQN Structure

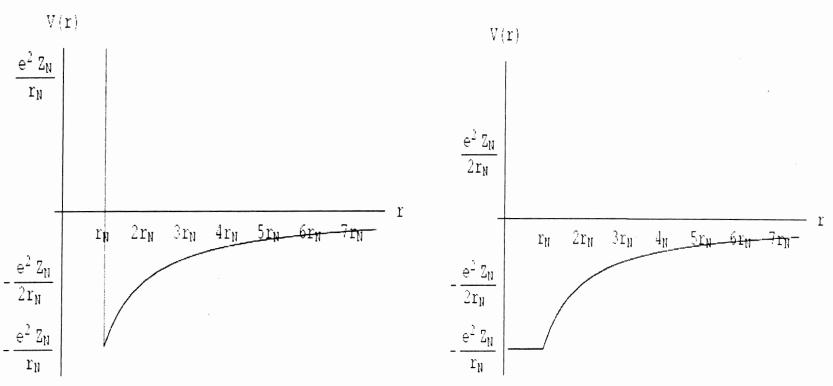


FIG. 1: Potential for least bound electron. FIG. 2: Approximation to potential for least bound electron.

Our Calculation

- Find ZN such that rate ambient photons ionize
 SQN electrons = rate ambient e's replace them.
- LHS falls with increasing ZN; RHS rises.
- SQN radius (rN) < Bohr radius/ZN: Coulomb;
- rN>rB/ZN: electrons feel 2d potential and assume K.E.<<P.E.=ZN*alpha/rN (conservative)

Rates

$$\dot{Z}_{+} = \pi b^{2} \int_{Z_{N}e^{2}/r_{N}}^{\infty} dE N_{\gamma}(E)$$

$$\left[N_{e}(E_{B} < E) \sigma(\gamma + SQN \rightarrow c + SQN). 1\right]$$
 $\dot{Z}_{-} = \pi r_{N}^{2} \int_{m_{e} - E_{B}}^{\infty} v_{e}(E) n_{e}(E) \left[1 + f_{e}(E, Z_{N})\right]$

$$h(E)g(e + SQN \rightarrow SQN + X, E) dE$$

$$f_{e} = 4\alpha \hbar c Z_{N} / (r_{N} E_{e})$$

$$\pi b^{2} c F_{\gamma}(E > E_{B}) = \pi r_{N}^{2} n_{e} \bar{v}_{e} (1 + f_{e})$$

Parameters

SQN Location	Radiation	n_{ϵ}	$v_{\epsilon}/10^6$
Solar Xray Flare	$T = 10^3 \text{eV}$	7	50
Galaxy Center	DBR $N_{\gamma} = 1.5 \times 10^5 F_H$.05	8
IGM Today	DBR $N_{\gamma} = F_H$	4×10^{-9}	1
Quiet Sun	$T=0.5~{ m eV}$	7	50
IGM Pre Recombo	CBR T = 0.26 eV	5	30
DBR near sun	$N_{\gamma} = 15F_H$	7	50
IGM Today	CBR T = 2.75K	4×10^{-9}	1

Results ZN(M)

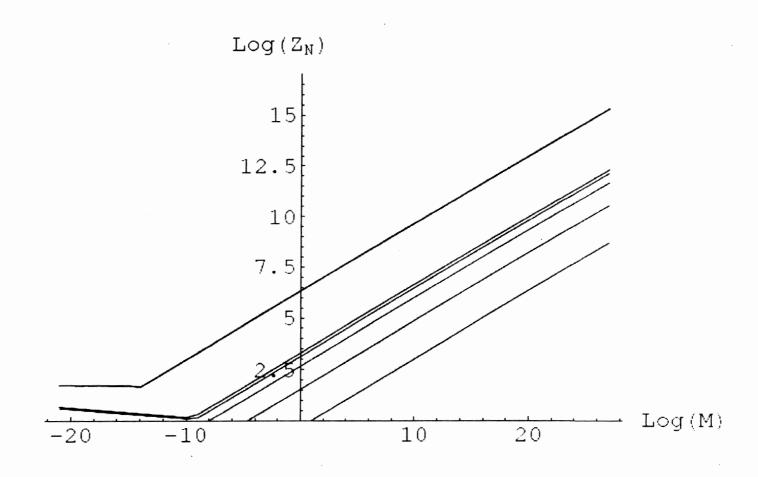
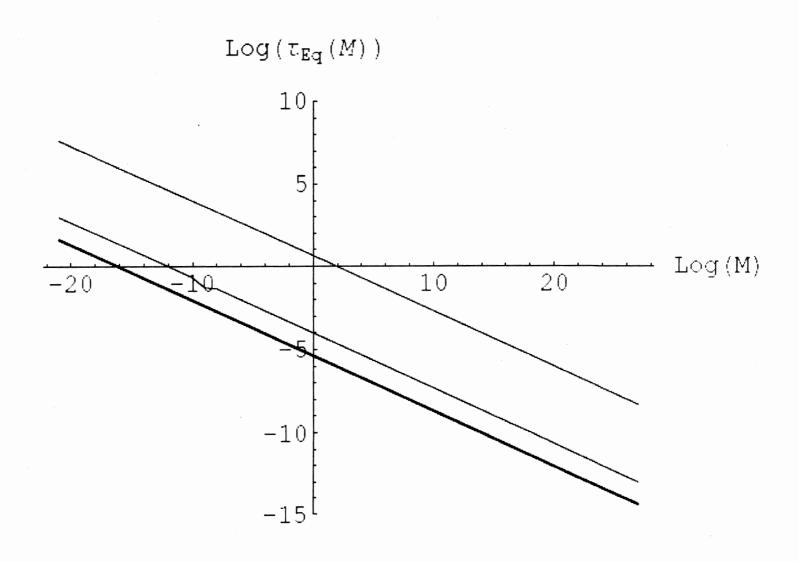



FIG. 3: SQN charge $Z_N(M)$.

Results: Time to Reach Equilibrium

Results: Binding Energies

Setting	$M^{1/3} au_{Eq}(\mathbf{y})$	$E_B(eV)$	$E_B(eV)$
		$M > 10^{-10}$ g	10^{-21} g
Galactic Center	10^{-4}	39	330
IGM Today: DBR	4.4	26	240
Solar system:			
during X-ray flare	4.5×10^{-6}	3.8×10^4	4.2×10^4
from DBR	0.66		240
Quiet Sun	4.5×10^{-6}	14	- 18
Recombo with CBR	3.8×10^{-6}	9.5	12
Today from CBR	4.4	8.7×10^{-3}	0.012

Features of Results

- Shape of ZN(M) expected.
- IGM e-numbers chosen as geometric mean between complete and residual H-ionization.
- Largest ZN is case of solar X-ray flare.
- Closed form

$$\pi b^2 c F_{\gamma}(E > E_B) = \pi r_N^2 n_e \bar{v}_e (1 + f_e)$$

Vacuum breakdown for B.E.>2m(el)

Particle Detectors

$$dN_{ev}/dt = n_{SQN}v_{SQN}A$$

- Let N(SQN)=rho(DM)/M; get At/M~10^{17}
- Note expect primordial M~10^{24}g
- If "lucky," could have shower of SQNs from SQS-SQS collision

Absorption and Emission Lines and Edges

- Explosive events could give trifecta: gamma absorption for E>2m(e); emission at 2m(e); and emission at m(e-) from e+ production.
- There are questions of e+ production in COG, and of pair instability Sne. SQM roles possible
- Possible detection of SQN emission line from e- capture during X-ray flare needs estimate.

Early Universe Effects

- CMB effects such as possible oscillations of Debye cloud around primordial SQNs??
- Entropy prod'n: gamma+SQN->2gamma+SQN?
- SQN catalysis of molecular hydrogen formation before pop 3 stars?

Summary and Future Work

Have calculated ZN, t(eq) and B.E. for 7
settings in limits of SQN radius greater or less
than Bohr radius divided by ZN.

- Need look at transition region.
- Need see if any of effects cited are detectable.

BACKUP: SQM problems

SQS as NS: pulsar glitches; superburst QPOs.

 Negative results of terrestrial (and "lunar") searches.

 Primordial production possibly precluded by neutrino diffusion nixing inhomogeneities